library(covdata)
#>
#> Attaching package: 'covdata'
#> The following object is masked from 'package:datasets':
#>
#> uspop
Overview of Included Tables
This vignette provides an overview of the contents of each table of data in the package. For further details on the variables, consult each table’s help page. Note that many of these data tables are provisional, or are estimates subject to significant interpretive limits. Read the supplied documentation carefully before working with any of the tables.
Daily case and mortality data runs until December 14th 2020 and was subsequently discontinued.
Data summary
Name |
Piped data |
Number of rows |
61836 |
Number of columns |
8 |
_______________________ |
|
Column type frequency: |
|
character |
2 |
Date |
1 |
numeric |
5 |
________________________ |
|
Group variables |
None |
Variable type: character
cname |
0 |
1 |
4 |
42 |
0 |
213 |
0 |
iso3 |
0 |
1 |
3 |
3 |
0 |
213 |
0 |
Variable type: Date
date |
0 |
1 |
2019-12-31 |
2020-12-14 |
2020-07-21 |
350 |
Variable type: numeric
cases |
0 |
1 |
1156.33 |
6782.63 |
-8261 |
0 |
15 |
275.00 |
234633 |
▇▁▁▁▁ |
deaths |
0 |
1 |
26.08 |
131.29 |
-1918 |
0 |
0 |
4.00 |
4928 |
▁▇▁▁▁ |
pop |
59 |
1 |
40987698.23 |
153129379.34 |
815 |
1293120 |
7169456 |
28515829.00 |
1433783692 |
▇▁▁▁▁ |
cu_cases |
0 |
1 |
100686.99 |
607743.06 |
0 |
129 |
2055 |
24650.00 |
16256754 |
▇▁▁▁▁ |
cu_deaths |
0 |
1 |
3104.89 |
15545.84 |
0 |
1 |
42 |
464.25 |
299177 |
▇▁▁▁▁ |
Weekly case and mortality data
Data summary
Name |
Piped data |
Number of rows |
4966 |
Number of columns |
11 |
_______________________ |
|
Column type frequency: |
|
character |
3 |
Date |
1 |
numeric |
7 |
________________________ |
|
Group variables |
None |
Variable type: character
year_week |
0 |
1.00 |
7 |
7 |
0 |
159 |
0 |
cname |
0 |
1.00 |
5 |
14 |
0 |
31 |
0 |
iso3 |
196 |
0.96 |
3 |
3 |
0 |
30 |
0 |
Variable type: Date
date |
0 |
1 |
2019-12-30 |
2023-01-09 |
2021-07-05 |
159 |
Variable type: numeric
pop |
0 |
1.00 |
31613614.13 |
85253844.55 |
39055 |
2108977.00 |
6916548.00 |
17475415.00 |
453006705.00 |
▇▁▁▁▁ |
cases |
222 |
0.96 |
77511.62 |
374657.80 |
0 |
1127.00 |
5487.00 |
28342.00 |
9023067.00 |
▇▁▁▁▁ |
deaths |
279 |
0.94 |
514.14 |
2005.64 |
0 |
8.00 |
46.00 |
250.50 |
28380.00 |
▇▁▁▁▁ |
cu_cases |
222 |
0.96 |
4188407.63 |
16969793.99 |
0 |
43400.25 |
485047.50 |
2117551.00 |
183857564.00 |
▇▁▁▁▁ |
cu_deaths |
279 |
0.94 |
44362.78 |
142967.65 |
0 |
651.00 |
6268.00 |
28807.00 |
1204878.00 |
▇▁▁▁▁ |
r14_cases |
263 |
0.95 |
557.34 |
1044.46 |
0 |
51.61 |
216.74 |
576.99 |
13728.65 |
▇▁▁▁▁ |
r14_deaths |
321 |
0.94 |
34.08 |
50.74 |
0 |
3.81 |
14.21 |
42.57 |
435.28 |
▇▁▁▁▁ |
State-level case and mortality data for the United States from the COVID Tracking Project
Cumulative testing, deaths, and hospitalization data over time
Data summary
Name |
covus |
Number of rows |
664960 |
Number of columns |
7 |
_______________________ |
|
Column type frequency: |
|
character |
4 |
Date |
1 |
logical |
1 |
numeric |
1 |
________________________ |
|
Group variables |
None |
Variable type: character
state |
0 |
1 |
2 |
2 |
0 |
56 |
0 |
fips |
0 |
1 |
2 |
2 |
0 |
56 |
0 |
measure |
0 |
1 |
5 |
30 |
0 |
31 |
0 |
measure_label |
0 |
1 |
6 |
54 |
0 |
32 |
0 |
Variable type: Date
date |
0 |
1 |
2020-01-13 |
2021-03-07 |
2020-09-03 |
420 |
Variable type: logical
data_quality_grade |
664960 |
0 |
NaN |
: |
Variable type: numeric
count |
434365 |
0.35 |
387436.8 |
1638507 |
0 |
498 |
7782 |
134223 |
49646014 |
▇▁▁▁▁ |
Total case and death counts by race and ethnicity
Data summary
Name |
covus_race |
Number of rows |
47880 |
Number of columns |
7 |
_______________________ |
|
Column type frequency: |
|
character |
2 |
Date |
1 |
numeric |
4 |
________________________ |
|
Group variables |
None |
Variable type: character
state |
0 |
1 |
2 |
2 |
0 |
56 |
0 |
group |
0 |
1 |
5 |
11 |
0 |
9 |
0 |
Variable type: Date
date |
0 |
1 |
2020-04-12 |
2021-03-07 |
2020-09-23 |
95 |
Variable type: numeric
cases |
15684 |
0.67 |
30240.68 |
103176.64 |
0 |
568 |
3661 |
21026 |
2619476 |
▇▁▁▁▁ |
deaths |
17686 |
0.63 |
708.93 |
1836.84 |
-1 |
12 |
68 |
440 |
24402 |
▇▁▁▁▁ |
hosp |
37253 |
0.22 |
2077.78 |
4654.37 |
0 |
67 |
345 |
1716 |
41099 |
▇▁▁▁▁ |
tests |
43549 |
0.09 |
349773.42 |
1269936.08 |
0 |
6298 |
36108 |
199214 |
18567612 |
▇▁▁▁▁ |
skimr::skim(covus_ethnicity)
Data summary
Name |
covus_ethnicity |
Number of rows |
15960 |
Number of columns |
7 |
_______________________ |
|
Column type frequency: |
|
character |
2 |
Date |
1 |
numeric |
4 |
________________________ |
|
Group variables |
None |
Variable type: character
state |
0 |
1 |
2 |
2 |
0 |
56 |
0 |
group |
0 |
1 |
7 |
12 |
0 |
3 |
0 |
Variable type: Date
date |
0 |
1 |
2020-04-12 |
2021-03-07 |
2020-09-23 |
95 |
Variable type: numeric
cases |
3080 |
0.81 |
73357.18 |
166184.31 |
0 |
5529 |
21920.5 |
70265.5 |
2619476 |
▇▁▁▁▁ |
deaths |
3144 |
0.80 |
1645.64 |
3463.93 |
-1 |
63 |
291.5 |
1401.0 |
32664 |
▇▁▁▁▁ |
hosp |
11662 |
0.27 |
5079.37 |
8831.52 |
0 |
556 |
1556.0 |
4959.5 |
56406 |
▇▁▁▁▁ |
tests |
14271 |
0.11 |
892566.44 |
2376098.22 |
0 |
58933 |
224156.0 |
537668.0 |
21633943 |
▇▁▁▁▁ |
State-level and county-level case and mortality data for the United States from the New York Times
skimr::skim(nytcovcounty)
Data summary
Name |
nytcovcounty |
Number of rows |
2502832 |
Number of columns |
6 |
_______________________ |
|
Column type frequency: |
|
character |
3 |
Date |
1 |
numeric |
2 |
________________________ |
|
Group variables |
None |
Variable type: character
county |
0 |
1.00 |
3 |
35 |
0 |
1932 |
0 |
state |
0 |
1.00 |
4 |
24 |
0 |
56 |
0 |
fips |
23678 |
0.99 |
5 |
5 |
0 |
3220 |
0 |
Variable type: Date
date |
0 |
1 |
2020-01-21 |
2022-05-13 |
2021-04-23 |
844 |
Variable type: numeric
cases |
0 |
1.00 |
10033.80 |
47525.22 |
0 |
382 |
1773 |
5884 |
2908425 |
▇▁▁▁▁ |
deaths |
57605 |
0.98 |
161.61 |
820.33 |
0 |
6 |
33 |
101 |
40267 |
▇▁▁▁▁ |
Data summary
Name |
nytcovstate |
Number of rows |
58526 |
Number of columns |
5 |
_______________________ |
|
Column type frequency: |
|
character |
2 |
Date |
1 |
numeric |
2 |
________________________ |
|
Group variables |
None |
Variable type: character
state |
0 |
1 |
4 |
24 |
0 |
56 |
0 |
fips |
0 |
1 |
2 |
2 |
0 |
56 |
0 |
Variable type: Date
date |
0 |
1 |
2020-01-21 |
2023-01-21 |
2021-08-16 |
1097 |
Variable type: numeric
cases |
0 |
1 |
834511.91 |
1394631.70 |
1 |
64160 |
324958 |
985279.8 |
11955605 |
▇▁▁▁▁ |
deaths |
0 |
1 |
11294.84 |
16797.98 |
0 |
1080 |
4790 |
14373.0 |
101982 |
▇▁▁▁▁ |
Data summary
Name |
nytcovus |
Number of rows |
1097 |
Number of columns |
3 |
_______________________ |
|
Column type frequency: |
|
Date |
1 |
numeric |
2 |
________________________ |
|
Group variables |
None |
Variable type: Date
date |
0 |
1 |
2020-01-21 |
2023-01-21 |
2021-07-22 |
1097 |
Variable type: numeric
cases |
0 |
1 |
44522009.0 |
35239239.4 |
1 |
8404635 |
34364829 |
80836264 |
101726588 |
▇▆▃▂▆ |
deaths |
0 |
1 |
602590.7 |
370532.5 |
0 |
222195 |
609870 |
989584 |
1111011 |
▆▂▅▃▇ |
Data from the CDC’s COVID-NET
CDC Catchment Areas_
skimr::skim(cdc_catchments)
Data summary
Name |
cdc_catchments |
Number of rows |
17 |
Number of columns |
2 |
_______________________ |
|
Column type frequency: |
|
character |
2 |
________________________ |
|
Group variables |
None |
Variable type: character
name |
0 |
1 |
3 |
9 |
0 |
3 |
0 |
area |
0 |
1 |
4 |
14 |
0 |
15 |
0 |
Deaths by Age
skimr::skim(cdc_deaths_by_age)
Data summary
Name |
cdc_deaths_by_age |
Number of rows |
12 |
Number of columns |
10 |
_______________________ |
|
Column type frequency: |
|
character |
1 |
Date |
3 |
numeric |
6 |
________________________ |
|
Group variables |
None |
Variable type: character
age_group |
0 |
1 |
5 |
10 |
0 |
12 |
0 |
Variable type: Date
data_as_of |
0 |
1 |
2020-04-30 |
2020-04-30 |
2020-04-30 |
1 |
start_week |
0 |
1 |
2020-02-01 |
2020-02-01 |
2020-02-01 |
1 |
end_week |
0 |
1 |
2020-04-25 |
2020-04-25 |
2020-04-25 |
1 |
Variable type: numeric
covid_deaths |
0 |
1 |
5753.50 |
9877.31 |
2.00 |
30.25 |
1211.50 |
7918.25 |
34521.00 |
▇▃▁▁▁ |
total_deaths |
0 |
1 |
118897.67 |
202377.07 |
712.00 |
5675.25 |
28460.00 |
149341.50 |
713386.00 |
▇▂▁▁▁ |
percent_expected_deaths |
0 |
1 |
0.97 |
0.00 |
0.97 |
0.97 |
0.97 |
0.97 |
0.97 |
▁▁▇▁▁ |
pneumonia_deaths |
0 |
1 |
10454.17 |
18036.25 |
33.00 |
109.00 |
1799.50 |
14114.25 |
62725.00 |
▇▃▁▁▁ |
pneumonia_and_covid_deaths |
0 |
1 |
2550.17 |
4387.93 |
0.00 |
12.50 |
491.50 |
3515.75 |
15301.00 |
▇▃▁▁▁ |
all_influenza_deaths_j09_j11 |
0 |
1 |
970.17 |
1618.90 |
11.00 |
40.75 |
358.50 |
1222.75 |
5821.00 |
▇▃▁▁▁ |
Deaths by Sex
skimr::skim(cdc_deaths_by_sex)
Data summary
Name |
cdc_deaths_by_sex |
Number of rows |
3 |
Number of columns |
10 |
_______________________ |
|
Column type frequency: |
|
character |
1 |
Date |
3 |
numeric |
6 |
________________________ |
|
Group variables |
None |
Variable type: character
Variable type: Date
data_as_of |
0 |
1 |
2020-04-30 |
2020-04-30 |
2020-04-30 |
1 |
start_week |
0 |
1 |
2020-02-01 |
2020-02-01 |
2020-02-01 |
1 |
end_week |
0 |
1 |
2020-04-25 |
2020-04-25 |
2020-04-25 |
1 |
Variable type: numeric
covid_deaths |
0 |
1 |
11507.33 |
10231.40 |
1.00 |
7470.50 |
14940.00 |
17260.50 |
19581.00 |
▇▁▁▇▇ |
total_deaths |
0 |
1 |
237795.00 |
206241.06 |
25.00 |
172555.00 |
345085.00 |
356680.00 |
368275.00 |
▃▁▁▁▇ |
percent_expected_deaths |
0 |
1 |
0.97 |
0.00 |
0.97 |
0.97 |
0.97 |
0.97 |
0.97 |
▁▁▇▁▁ |
pneumonia_deaths |
0 |
1 |
20908.33 |
18248.40 |
1.00 |
14545.00 |
29089.00 |
31362.00 |
33635.00 |
▃▁▁▁▇ |
pneumonia_and_covid_deaths |
0 |
1 |
5100.33 |
4559.67 |
1.00 |
3258.00 |
6515.00 |
7650.00 |
8785.00 |
▇▁▁▇▇ |
all_influenza_deaths_j09_j11 |
0 |
1 |
1940.33 |
1682.21 |
0.00 |
1416.00 |
2832.00 |
2910.50 |
2989.00 |
▃▁▁▁▇ |
Deaths by State
skimr::skim(cdc_deaths_by_state)
Data summary
Name |
cdc_deaths_by_state |
Number of rows |
53 |
Number of columns |
10 |
_______________________ |
|
Column type frequency: |
|
character |
1 |
Date |
3 |
numeric |
6 |
________________________ |
|
Group variables |
None |
Variable type: character
Variable type: Date
data_as_of |
0 |
1 |
2020-04-30 |
2020-04-30 |
2020-04-30 |
1 |
start_week |
0 |
1 |
2020-02-01 |
2020-02-01 |
2020-02-01 |
1 |
end_week |
0 |
1 |
2020-04-25 |
2020-04-25 |
2020-04-25 |
1 |
Variable type: numeric
covid_deaths |
6 |
0.89 |
735.02 |
1801.11 |
0 |
54.50 |
153.00 |
519.00 |
10978.00 |
▇▁▁▁▁ |
total_deaths |
0 |
1.00 |
13557.43 |
13996.83 |
856 |
3813.00 |
10721.00 |
17624.00 |
69341.00 |
▇▂▁▁▁ |
percent_expected_deaths |
0 |
1.00 |
0.93 |
0.27 |
0 |
0.86 |
0.95 |
0.99 |
2.19 |
▁▂▇▁▁ |
pneumonia_deaths |
0 |
1.00 |
1197.26 |
1453.17 |
41 |
277.00 |
769.00 |
1306.00 |
6076.00 |
▇▁▁▁▁ |
pneumonia_and_covid_deaths |
10 |
0.81 |
355.81 |
759.51 |
0 |
30.50 |
65.00 |
296.00 |
4019.00 |
▇▁▁▁▁ |
all_influenza_deaths_j09_j11 |
3 |
0.94 |
116.58 |
142.24 |
14 |
30.50 |
87.50 |
125.50 |
850.00 |
▇▁▁▁▁ |
Deaths by Week
skimr::skim(cdc_deaths_by_week)
Data summary
Name |
cdc_deaths_by_week |
Number of rows |
13 |
Number of columns |
10 |
_______________________ |
|
Column type frequency: |
|
Date |
3 |
numeric |
7 |
________________________ |
|
Group variables |
None |
Variable type: Date
data_as_of |
0 |
1 |
2020-04-30 |
2020-04-30 |
2020-04-30 |
1 |
start_week |
0 |
1 |
2020-02-01 |
2020-04-25 |
2020-03-14 |
13 |
end_week |
0 |
1 |
2020-02-01 |
2020-04-25 |
2020-03-14 |
13 |
Variable type: numeric
covid_deaths |
0 |
1 |
2655.46 |
4194.37 |
0.00 |
0.00 |
49.00 |
2659.00 |
11864.00 |
▇▁▁▂▁ |
total_deaths |
0 |
1 |
54875.85 |
9864.46 |
24387.00 |
53940.00 |
56831.00 |
57299.00 |
65676.00 |
▁▁▁▇▂ |
percent_expected_deaths |
0 |
1 |
0.97 |
0.17 |
0.45 |
0.97 |
0.97 |
0.99 |
1.19 |
▁▁▁▇▂ |
pneumonia_deaths |
0 |
1 |
4825.00 |
2217.19 |
2219.00 |
3671.00 |
3692.00 |
5598.00 |
9580.00 |
▇▃▁▁▂ |
pneumonia_and_covid_deaths |
0 |
1 |
1177.00 |
1863.76 |
0.00 |
0.00 |
25.00 |
1220.00 |
5281.00 |
▇▁▁▂▁ |
all_influenza_deaths_j09_j11 |
0 |
1 |
447.77 |
156.19 |
58.00 |
427.00 |
494.00 |
536.00 |
619.00 |
▁▁▁▇▇ |
pneumonia_influenza_and_covid_19_deaths |
0 |
1 |
6690.23 |
4292.62 |
3553.00 |
4165.00 |
4275.00 |
7397.00 |
16272.00 |
▇▁▁▂▁ |
National ER Visits
skimr::skim(nssp_covid_er_nat)
Data summary
Name |
nssp_covid_er_nat |
Number of rows |
54 |
Number of columns |
9 |
_______________________ |
|
Column type frequency: |
|
character |
4 |
numeric |
5 |
________________________ |
|
Group variables |
None |
Variable type: character
total_ed_visits |
0 |
1 |
7 |
7 |
0 |
27 |
0 |
visit_type |
0 |
1 |
3 |
3 |
0 |
2 |
0 |
region |
0 |
1 |
8 |
8 |
0 |
1 |
0 |
source |
0 |
1 |
21 |
21 |
0 |
1 |
0 |
Variable type: numeric
week |
0 |
1 |
26.04 |
19.81 |
1.00 |
7.25 |
14.00 |
45.75 |
52.00 |
▇▂▁▂▇ |
num_fac |
0 |
1 |
3346.89 |
48.97 |
3249.00 |
3329.50 |
3352.00 |
3389.50 |
3406.00 |
▃▁▆▃▇ |
visits |
0 |
1 |
41521.67 |
16344.25 |
17639.00 |
31216.00 |
39183.50 |
50532.00 |
86088.00 |
▅▇▃▂▁ |
pct_visits |
0 |
1 |
0.02 |
0.01 |
0.01 |
0.01 |
0.02 |
0.02 |
0.05 |
▇▆▂▁▂ |
year |
0 |
1 |
2019.52 |
0.50 |
2019.00 |
2019.00 |
2020.00 |
2020.00 |
2020.00 |
▇▁▁▁▇ |
Regional ER Visits
skimr::skim(nssp_covid_er_reg)
Data summary
Name |
nssp_covid_er_reg |
Number of rows |
538 |
Number of columns |
9 |
_______________________ |
|
Column type frequency: |
|
character |
4 |
numeric |
5 |
________________________ |
|
Group variables |
None |
Variable type: character
total_ed_visits |
0 |
1 |
5 |
6 |
0 |
269 |
0 |
visit_type |
0 |
1 |
3 |
3 |
0 |
2 |
0 |
region |
0 |
1 |
8 |
9 |
0 |
10 |
0 |
source |
0 |
1 |
21 |
21 |
0 |
1 |
0 |
Variable type: numeric
week |
0 |
1 |
25.99 |
19.66 |
1 |
7.00 |
14.00 |
46.00 |
52.00 |
▇▂▁▂▇ |
num_fac |
0 |
1 |
335.18 |
234.58 |
135 |
190.00 |
222.00 |
343.00 |
884.00 |
▇▃▁▂▂ |
visits |
0 |
1 |
4164.87 |
4028.53 |
279 |
1596.00 |
2780.00 |
4723.75 |
23345.00 |
▇▂▁▁▁ |
pct_visits |
0 |
1 |
0.02 |
0.01 |
0 |
0.01 |
0.02 |
0.02 |
0.11 |
▇▂▁▁▁ |
year |
0 |
1 |
2019.52 |
0.50 |
2019 |
2019.00 |
2020.00 |
2020.00 |
2020.00 |
▇▁▁▁▇ |
Data from the U.S. National Center for Health Statistics
Provisional COVID-19 Death Counts by Sex, Age, and State
Data summary
Name |
nchs_sas |
Number of rows |
115668 |
Number of columns |
15 |
_______________________ |
|
Column type frequency: |
|
character |
6 |
Date |
1 |
numeric |
8 |
________________________ |
|
Group variables |
None |
Variable type: character
start_date |
0 |
1 |
10 |
10 |
0 |
37 |
0 |
end_date |
0 |
1 |
10 |
10 |
0 |
37 |
0 |
group |
0 |
1 |
7 |
8 |
0 |
3 |
0 |
state |
0 |
1 |
4 |
20 |
0 |
54 |
0 |
sex |
0 |
1 |
4 |
9 |
0 |
3 |
0 |
age_group |
0 |
1 |
8 |
17 |
0 |
17 |
0 |
Variable type: Date
data_as_of |
0 |
1 |
2023-01-18 |
2023-01-18 |
2023-01-18 |
1 |
Variable type: numeric
year |
2754 |
0.98 |
2021.10 |
0.91 |
2020 |
2020 |
2021 |
2022 |
2023 |
▇▇▁▇▁ |
month |
13770 |
0.88 |
6.35 |
3.52 |
1 |
3 |
6 |
9 |
12 |
▇▅▅▅▇ |
covid_19_deaths |
31823 |
0.72 |
351.76 |
6263.51 |
0 |
0 |
10 |
60 |
1094723 |
▇▁▁▁▁ |
total_deaths |
17146 |
0.85 |
2812.18 |
52269.95 |
0 |
41 |
148 |
648 |
10144808 |
▇▁▁▁▁ |
pneumonia_deaths |
36293 |
0.69 |
349.71 |
6016.66 |
0 |
0 |
17 |
76 |
1030983 |
▇▁▁▁▁ |
pneumonia_and_covid_19_deaths |
30476 |
0.74 |
174.88 |
3162.39 |
0 |
0 |
0 |
26 |
550128 |
▇▁▁▁▁ |
influenza_deaths |
22407 |
0.81 |
4.94 |
103.26 |
0 |
0 |
0 |
0 |
18477 |
▇▁▁▁▁ |
pneumonia_influenza_or_covid_19_deaths |
35678 |
0.69 |
535.21 |
9239.91 |
0 |
0 |
25 |
112 |
1591892 |
▇▁▁▁▁ |
Estimated distributions of US COVID-19 deaths and population size by race and Hispanic origin, by State
Data summary
Name |
nchs_wss |
Number of rows |
15582 |
Number of columns |
12 |
_______________________ |
|
Column type frequency: |
|
character |
6 |
Date |
1 |
numeric |
5 |
________________________ |
|
Group variables |
None |
Variable type: character
start_date |
0 |
1 |
10 |
10 |
0 |
37 |
0 |
end_date |
0 |
1 |
10 |
10 |
0 |
37 |
0 |
year |
0 |
1 |
4 |
9 |
0 |
5 |
0 |
obs_unit |
0 |
1 |
7 |
8 |
0 |
3 |
0 |
state |
0 |
1 |
4 |
20 |
0 |
53 |
0 |
race_ethnicity |
0 |
1 |
18 |
54 |
0 |
7 |
0 |
Variable type: Date
data_as_of |
0 |
1 |
2023-01-18 |
2023-01-18 |
2023-01-18 |
1 |
Variable type: numeric
month |
1855 |
0.88 |
6.35 |
3.52 |
1 |
3.0 |
6.0 |
9.0 |
12.0 |
▇▅▅▅▇ |
deaths |
4625 |
0.70 |
596.40 |
8680.87 |
0 |
0.0 |
14.0 |
100.0 |
718968.0 |
▇▁▁▁▁ |
dist_pct |
4625 |
0.70 |
17.59 |
29.22 |
0 |
0.0 |
1.1 |
19.7 |
100.0 |
▇▁▁▁▁ |
uw_dist_pop_pct |
0 |
1.00 |
14.28 |
23.57 |
0 |
0.9 |
3.1 |
12.7 |
92.7 |
▇▁▁▁▁ |
wt_dist_pop_pct |
0 |
1.00 |
13.68 |
21.60 |
0 |
0.5 |
3.2 |
14.4 |
93.6 |
▇▁▁▁▁ |
Cross-national short-term mortality fluctuations data from the Human Mortality Database
Data summary
Name |
stmf |
Number of rows |
580395 |
Number of columns |
17 |
_______________________ |
|
Column type frequency: |
|
character |
7 |
Date |
1 |
numeric |
9 |
________________________ |
|
Group variables |
None |
Variable type: character
country_code |
0 |
1.00 |
3 |
7 |
0 |
38 |
0 |
cname |
0 |
1.00 |
5 |
25 |
0 |
38 |
0 |
iso2 |
34380 |
0.94 |
2 |
2 |
0 |
35 |
0 |
continent |
35850 |
0.94 |
4 |
13 |
0 |
5 |
0 |
iso3 |
34380 |
0.94 |
3 |
3 |
0 |
35 |
0 |
sex |
0 |
1.00 |
1 |
1 |
0 |
3 |
0 |
age_group |
0 |
1.00 |
3 |
5 |
0 |
5 |
0 |
Variable type: Date
approx_date |
0 |
1 |
1990-01-07 |
2023-01-01 |
2012-10-07 |
1722 |
Variable type: numeric
year |
0 |
1 |
2011.58 |
6.88 |
1990 |
2006.00 |
2012.00 |
2017.00 |
2022.00 |
▁▂▆▆▇ |
week |
0 |
1 |
26.50 |
15.03 |
1 |
13.00 |
26.00 |
39.00 |
53.00 |
▇▇▇▇▇ |
split |
0 |
1 |
0.12 |
0.32 |
0 |
0.00 |
0.00 |
0.00 |
1.00 |
▇▁▁▁▁ |
split_sex |
0 |
1 |
0.00 |
0.07 |
0 |
0.00 |
0.00 |
0.00 |
1.00 |
▇▁▁▁▁ |
forecast |
0 |
1 |
0.10 |
0.30 |
0 |
0.00 |
0.00 |
0.00 |
1.00 |
▇▁▁▁▁ |
death_count |
0 |
1 |
617.60 |
1585.49 |
0 |
39.00 |
162.00 |
449.75 |
26362.00 |
▇▁▁▁▁ |
death_rate |
0 |
1 |
0.05 |
0.07 |
0 |
0.00 |
0.02 |
0.07 |
0.57 |
▇▂▁▁▁ |
deaths_total |
0 |
1 |
3088.00 |
6498.29 |
2 |
472.00 |
998.00 |
2543.00 |
87413.00 |
▇▁▁▁▁ |
rate_total |
0 |
1 |
0.01 |
0.00 |
0 |
0.01 |
0.01 |
0.01 |
0.04 |
▅▇▁▁▁ |
National-level all-cause and excess mortality estimates from the New York Times
Data summary
Name |
nytexcess |
Number of rows |
7258 |
Number of columns |
12 |
_______________________ |
|
Column type frequency: |
|
character |
5 |
Date |
2 |
numeric |
5 |
________________________ |
|
Group variables |
None |
Variable type: character
country |
0 |
1.00 |
4 |
14 |
0 |
35 |
0 |
placename |
6883 |
0.05 |
6 |
8 |
0 |
4 |
0 |
frequency |
0 |
1.00 |
6 |
7 |
0 |
2 |
0 |
year |
0 |
1.00 |
4 |
17 |
0 |
15 |
0 |
baseline |
5990 |
0.17 |
20 |
25 |
0 |
7 |
0 |
Variable type: Date
start_date |
768 |
0.89 |
2010-01-09 |
2020-12-23 |
2018-02-05 |
1267 |
end_date |
768 |
0.89 |
2010-01-15 |
2020-12-29 |
2018-02-11 |
1267 |
Variable type: numeric
month |
0 |
1.00 |
6.60 |
3.36 |
1 |
4.00 |
7.0 |
9.0 |
12 |
▇▆▆▆▇ |
week |
666 |
0.91 |
26.77 |
14.58 |
2 |
14.00 |
27.0 |
39.0 |
52 |
▇▇▇▇▇ |
deaths |
0 |
1.00 |
7968.24 |
14334.14 |
455 |
1460.00 |
2395.5 |
10486.0 |
141292 |
▇▁▁▁▁ |
expected_deaths |
5990 |
0.17 |
9237.09 |
15850.00 |
548 |
1443.00 |
2423.0 |
10771.5 |
139343 |
▇▁▁▁▁ |
excess_deaths |
5990 |
0.17 |
1195.43 |
3242.72 |
-6721 |
-42.25 |
76.5 |
926.0 |
30400 |
▇▂▁▁▁ |
Mobility Data from Apple
skimr::skim(apple_mobility)
Data summary
Name |
apple_mobility |
Number of rows |
2254515 |
Number of columns |
7 |
_______________________ |
|
Column type frequency: |
|
character |
5 |
Date |
1 |
numeric |
1 |
________________________ |
|
Group variables |
None |
Variable type: character
country |
0 |
1 |
5 |
20 |
0 |
63 |
0 |
sub_region |
0 |
1 |
4 |
46 |
0 |
606 |
0 |
subregion_and_city |
0 |
1 |
4 |
46 |
0 |
853 |
0 |
geo_type |
0 |
1 |
4 |
14 |
0 |
3 |
0 |
transportation_type |
0 |
1 |
7 |
7 |
0 |
3 |
0 |
Variable type: Date
date |
0 |
1 |
2020-01-13 |
2022-04-12 |
2021-02-26 |
819 |
Variable type: numeric
score |
608041 |
0.73 |
122.59 |
66.81 |
2.43 |
83.79 |
113.72 |
148.8 |
2228.83 |
▇▁▁▁▁ |
Other Tables
Country Codes
Data summary
Name |
Piped data |
Number of rows |
213 |
Number of columns |
4 |
_______________________ |
|
Column type frequency: |
|
character |
4 |
________________________ |
|
Group variables |
None |
Variable type: character
cname |
0 |
1.00 |
4 |
42 |
0 |
213 |
0 |
iso3 |
0 |
1.00 |
3 |
3 |
0 |
213 |
0 |
iso2 |
2 |
0.99 |
2 |
2 |
0 |
211 |
0 |
continent |
0 |
1.00 |
4 |
13 |
0 |
6 |
0 |
U.S. Census Population Estimates
Data summary
Name |
uspop |
Number of rows |
459 |
Number of columns |
17 |
_______________________ |
|
Column type frequency: |
|
character |
10 |
numeric |
7 |
________________________ |
|
Group variables |
None |
Variable type: character
state |
0 |
1.00 |
4 |
20 |
0 |
51 |
0 |
state_abbr |
9 |
0.98 |
2 |
2 |
0 |
50 |
0 |
statefips |
0 |
1.00 |
2 |
2 |
0 |
51 |
0 |
region_name |
9 |
0.98 |
4 |
9 |
0 |
4 |
0 |
division_name |
9 |
0.98 |
7 |
18 |
0 |
9 |
0 |
sex_id |
0 |
1.00 |
4 |
6 |
0 |
3 |
0 |
sex |
0 |
1.00 |
4 |
10 |
0 |
3 |
0 |
hisp_id |
0 |
1.00 |
4 |
7 |
0 |
3 |
0 |
hisp_label |
0 |
1.00 |
5 |
12 |
0 |
3 |
0 |
fips |
0 |
1.00 |
11 |
11 |
0 |
51 |
0 |
Variable type: numeric
pop |
0 |
1 |
2851132.32 |
4198641.26 |
6154 |
386961.5 |
1349442 |
3558480.0 |
39557045 |
▇▁▁▁▁ |
white |
0 |
1 |
2179861.40 |
3116129.25 |
5120 |
296294.0 |
1088503 |
2759335.5 |
28531740 |
▇▁▁▁▁ |
black |
0 |
1 |
381736.98 |
644380.66 |
260 |
11907.0 |
80714 |
486281.5 |
3673855 |
▇▁▁▁▁ |
amind |
0 |
1 |
36143.97 |
65036.83 |
161 |
6103.5 |
15273 |
35770.5 |
651076 |
▇▁▁▁▁ |
asian |
0 |
1 |
168458.39 |
515557.14 |
79 |
5045.5 |
26484 |
140424.5 |
6063600 |
▇▁▁▁▁ |
nhopi |
0 |
1 |
6966.61 |
18657.18 |
23 |
669.0 |
2029 |
5063.5 |
199872 |
▇▁▁▁▁ |
tom |
0 |
1 |
77964.97 |
131251.16 |
455 |
12091.0 |
33757 |
98669.5 |
1554757 |
▇▁▁▁▁ |